Содержание:
- 1. Общие понятия
- 2. Фотосинтез
- 3. Хемосинтез
- 4. Биосинтез белка. Генетический код
- 5. Катаболизм (энергетический обмен)
- 6. Аэробное клеточное дыхание
- 7. Анаэробное дыхание. Брожение
Общие понятия
Обмен веществ, или метаболизм, — строго упорядоченная совокупность химических превращений, которые обеспечивают все проявления жизнедеятельности организма и его вещественное и энергетическое взаимодействие с окружающей средой.
В процессе метаболизма клетки и организм получают из окружающей среды определенные вещества и энергию, преобразуют (и при необходимости накапливают) их и выделяют в среду конечные продукты и энергию в других формах.
Значение обмена веществ: он позволяет
■ сохранять состав клеток организма постоянным,
■ обновлять, по мере необходимости, клеточные структуры,
■ поддерживать энергетический баланс клеток и организма.
Важнейшие особенности обмена веществ: высокая упорядоченность и строгая последовательность всех биохимических реакций в организме, участие в них всех клеточных структур и очень большого числа различных биологических катализаторов — ферментов.
❖ Виды обмена веществ в зависимости от направленности процессов: анаболизм и катаболизм.
Анаболизм (или ассимиляция, пластический обмен) — совокупность реакций биохимического синтеза, при котором из поступивших в клетку более простых веществ образуются (с затратами энергии) сложные органические соединения, специфические для данной клетки и используемые для построения и обновления клеток и тканей или, в дальнейшем, для высвобождения энергии (примеры: фотосинтез, хемосинтез, биосинтез белка, липидов, углеводов и др.).
Катаболизм (или диссимиляция, энергетический обмен) — совокупность ферментативных реакций расщепления сложных органических соединений (в том числе пищевых веществ) на более простые вещества, сопровождающееся высвобождением энергии и запасанием ее в молекулах АТФ {пример: гидролиз полимеров до мономеров и последующее их расщепление до воды, аммиака и углекислого газа).
Взаимосвязь анаболизма и катаболизма:
■ они являются противоположными сторонами единого процесса обмена веществ;
■ в реакциях анаболизма (пластического обмена) потребляется энергия, выделяемая в реакциях катаболизма (энергетического обмена);
■ для осуществления реакций катаболизма необходим постоянный биосинтез ферментов и структур органоидов, которые в процессе жизнедеятельности постепенно разрушаются.
Фотосинтез
Фотосинтез — это процесс синтеза органических веществ из молекул углекислого газа и воды, происходящий с использованием энергии света (обычно солнечной энергии) в зеленых растениях, некоторых бактериях и протистах и сопровождающийся выделением кислорода.
■ Осуществляется с помощью хлорофиллов и каротиноидов, локализованных на мембранах тилакоидов хлоропластов.
■ Коэффициент полезного действия фотосинтеза ~60%.
■ Уравнение фотосинтеза:
6СO2 + 6Н2O + свет → С6Н12O6 + 6O2↑.
Стадии фотосинтеза: световая (осуществляется в тилакоидах гран) и темновая (осуществляется в строме хлоропластов).
Процессы световой фазы
Видимый свет частично поглощается хлорофиллом, в результате чего некоторые его молекулы возбуждаются и теряют электроны е—, превращаясь в положительно заряженные ионы. Одновременно под действием света происходит фотолиз (фоторазложение) воды с образованием ионов ОН— и Н+ : Н2O → ОН— + Н+ . Ионы Н— накапливаются преимущественно на внутренней стороне мембраны, заряжая ее положительно. Некоторые гидроксильные группы ОН— теряют электроны, восстанавливаясь до радикалов ОН, которые объединяются, образуя воду и свободный кислород, выделяемый в атмосферу:
ОН— → ОН + е—, 4OН → 2Н2О +O2↑.
Часть электронов, потерянных возбужденным хлорофиллом и гидроксилом, пройдя по электронно-транспортной цепи мембраны, накапливается преимущественно на ее внешней стороне, заряжая ее отрицательно. Оставшиеся электроны рекомбинируют с частью образовавшихся положительно заряженных ионов хлорофилла.
В результате разделения заряженных частиц е— и Н+ между внешней и внутренней сторонами мембраны образуется электрическое поле. Когда оно достигает некоторой критической величины, ионы Н+ (протоны) устремляются по протонному каналу в ферменте АТФ-синтетаза, встроенному в мембрану тилакоида, к внешней поверхности мембраны. Достигнув ее, они соединяются с электронами, образуя атомарный водород: Н+е—→Н. При этом выделяется энергия, которая идет на синтез молекул АТФ. Образовавшиеся молекулы АТФ переходят в строму хлоропласта. Нейтральные атомы водорода Н соединяются с молекулами кофермента, кратко называемого НАДФ (см. ниже), образуя комплексы НАДФ*Н+ Н+, которые также переходят в строму.
Результаты процессов световой фазы: образование молекул АТФ, комплексов НАДФ*Н+ Н+ и свободного кислорода О2.
Процессы темновой фазы происходят в строме хлоропласта, куда поступает АТФ, НАДФ*Н+ Н+ (от тилакоидов гран) и СО2 (через устьица из воздуха). В присутствии ферментов молекулы СО2 присоединяются к молекулам присутствующего в строме сахара-пентозы рибупозодифосфата (С5). При этом образуется нестойкое шестиуглеродное соединение (С6), которое ферментативным путем распадается на две триозы (С3) — трехуглеродные молекулы фосфоглицериновой кислоты и фосфоглицеринового альдегида (которые для краткости обозначим ФГ). Превращения молекул ФГ происходят при участии продуктов световой фазы (АТФ и комплексов НАДФ*Н+ Н+). Каждая из молекул ФГ отнимает по одной фосфатной группе у молекулы АТФ, обогащаясь при этом энергией, а затем отщепляет атомы водорода от НАДФ*Н+ Н+ , окисляя его до НАДФ. Дальнейшие превращения молекул ФГ осуществляются по одному из трех вариантов. Одна часть этих молекул объединяется, образуя углеводы (глюкозу) и воду; полученные углеводы затем могут полимеризоваться, образуя крахмал, целлюлозу и т.п. Другая часть участвует в синтезе аминокислот, карбоновых кислот, спиртов и др. Третья часть молекул ФГ участвует в цепочке реакций, в результате которых триозы превращаются в пятиуглеродные молекулы исходного вещества — рибулозодифосфата, тем самым замыкая цикл химических превращений — C3-цикл, или цикл Кальвина.
■ Итоговое уравнение химической реакции темновой фазы:
6СО2 + 24Н → С6Н12О6 + 6Н2О.
В дальнейшем могут образовываться полисахариды и другие органические соединения.
♦Схематически световая и темновая фазы процесса фотосинтеза изображены на рисунке.
❖ С4-фотосинтез. У некоторых растений жарких засушливых мест (кукурузы, сахарного тростника) фотосинтез осуществляется при низких концентрациях СО2. С помощью особого фермента молекула СО2 присоединяется к трехуглеродной фос-фофенолпировиноградной кислоте, в результате чего образуется четырехуглеродная щавелевоуксусная кислота (ЩУК). Эта кислота затем переходит в другие клетки листа, где от нее СО2 отщепляется и накапливается в количествах, необходимых для нормального протекания фотосинтеза с образованием глюкозы.
❖ Кислотный метаболизм толстянковых (САМ) — способ фиксации двуокиси углерода суккулентами, живущими в условиях пустынь (кактусы, молочаи и др.). Они запасают СО2 в виде органических кислот ночью когда открыты устьица, а днем осуществляют фотосинтез, отщепляя СО2 от этих кислот.
❖Бактериальный фотосинтез — примитивная, древнейшая форма фотосинтеза, осуществляемая фотосинтезирующими бактериями (зелеными серными, пурпурными серными и пурпурными несерными) с помощью бактериохлорофиллов без использования воды и без выделения кислорода; источник Н+ и е— — H2S.
НАД и НАДФ — коферменты, участвующие в обмене веществ, служащие акцепторами атомов водорода и электронов в клетке и обеспечивающие перенос протонов и электронов в химических реакциях, причем сами они в этих реакциях не участвуют.
Коферменты — органические соединения небелковой природы, входящие в состав активного центра некоторых ферментов. Соединяясь с белковым компонентом сложных ферментов, ко-фермент образует каталитически активный комплекс. Коферменты легко отделяются от белковой молекулы и служат переносчиками электронов, отдельных атомов или групп атомов, отщепляемых ферментами от субстратов.
❖ Значение фотосинтеза: он основной источник первичного органического вещества, единственный источник свободного кислорода на Земле и регулятор содержания СО2 в атмосфере; энергия, полученная от Солнца и запасенная в химических связях органических соединений, используется всеми гетеротрофными организмами.
Хемосинтез
Хемосинтез — процесс синтеза органических веществ, происходящий за счет энергии, выделяющейся при окислении ряда неорганических соединений (сероводорода, аммиака, водорода и др.).
■ Хемосинтез характерен для некоторых автотрофных аэробных и анаэробных бактерий-хемосинтетиков.
Роль бактерий-хемосинтетиков: азотфиксирующие бактерии повышают урожайность почвы, серобактерии способствуют постепенному разрушению и выветриванию горных пород, участвуют в очищении от соединений серы промышленных сточных вод, железобактерии вырабатывают Fe(OH)3, образующий болотную железную руду, водородные бактерии используются для получения пищевого и кормового белка.
Биосинтез белка. Генетический код
Биосинтез — процесс синтеза сложных органических веществ (полисахаридов, белков, нуклеотидов и т.д.) из более простых, происходящий в живых организмах при участии ферментов.
Биосинтез белка — это процесс образования белков из аминокислот, осуществляющийся во всех клетках и происходящий на рибосомах, расположенных в основном в цитоплазме.
Каждая клетка имеет специфический набор белков, характерных только для этой клетки. Информация о том, какие белки должны синтезироваться в клетках данного организма, записана в виде последовательности нуклеотидов в молекуле ДНК.
Ген — участок молекулы ДНК, характеризующийся определенной последовательностью нуклеотидов, в котором закодирована информация о первичной структуре полипептидной цепи (последовательности аминокислот в конкретном белке) или нуклеотидов в РНК. В одной молекуле ДНК содержится от сотен до десятков тысяч генов.
Генетический код — это единая система записи наследственной информации в молекулах нуклеиновых кислот ДНК и и-РНК и виде последовательности нуклеотидов.
❖ Свойства генетического кода:
■триплетность: каждая аминокислота кодируется определенным триплетом (или кодоном) — сочетанием трех последовательно расположенных нуклеотидов;
■ множественность (или избыточность): одна и та же аминокислота может кодироваться несколькими различными триплетами (от 2 до 6);
■ однозначность: каждый триплет кодирует только одну аминокислоту;
■ неперекрываемость: один нуклеотид не может входить в состав соседних триплетов;
■ непрерывность: гены в цепи нуклеотидов имеют строго фиксированные стартовые (или инициирующие) кодоны и терминирующие кодоны, сигнализирующие об окончании синтеза полипептидной цепи; внутри последовательности нуклеотидов гена «знаки препинания» отсутствуют;
■ универсальность: одинаковые триплеты кодируют одну и ту же аминокислоту у всех живых организмов.
Матричный синтез — синтез молекул сложных органических веществ (белка, РНК, ДНК) из более простых на основе генетической информации, закодированной на матрице.
Матрица — это готовая структура (молекула ДНК или и-РНК), содержащая закодированную генетическую информацию, в соответствии с которой осуществляется синтез новой структуры.
Кодон — три рядом расположенных нуклеотида в молекулах ДНК или и-РНК, кодирующие одну аминокислоту.
Реакции матричного синтеза: редупликация молекулы ДНК, синтез и-РНК (транскрипция), сборка молекулы белка (трансляция):
❖ Этапы процесса биосинтеза белка:
транскрипция (1-й этап),
трансляция (2-й этап).
При этом параллельно должен проходить процесс рекогниции. Информация о последовательности аминокислот в молекуле белка содержится в гене молекулы ДНК, которая непосредственного участия в синтезе белковых молекул не принимает, а лишь передает нужную информацию молекуле-посреднику и-РНК.
❖ Транскрипция — процесс «считывания» генетической информации с молекулы ДНК и копирование ее на молекулу и-РНК.
Механизм транскрипции: фермент РНК-полимераза раскручивает двойную спираль молекулы ДНК на участке, соответствующем определенному гену, и обнажает одну из цепей спирали. Двигаясь вдоль этой цепи и встретив инициирующий кодон, РНК-полимераза начинает подбирать в кариоплазме нуклеотиды, комплементарные нуклеотидам гена ДНК, и соединяет их в цепочку и-РНК (молекулы информационной РНК). Процесс завершается после того как РНК-полимераза встретит в цепочке нуклеотидов ДНК терминирующий кодон. Таким образом, в результате транскрипции последовательность нуклеотидов, расположенных на участке от инициирующего до терминирующего кодона, «переписывается» в последовательность нуклеотидов и-РНК.
■ Каждый триплет нуклеотидов и-РНК является кодоном, по которому в процессе сборки молекулы белка будет подбираться соответствующая аминокислота.
Синтезированная в ядре и-РНК отделяется от ДНК и через поры ядерной оболочки поступает в цитоплазму, где присоединяется к одной или нескольким рибосомам.
❖Рекогниция — это процесс «узнавания» молекулой т-РНК (транспортной РНК) свойственной ей аминокислоты и образование комплекса т-РНК + активированная аминокислота.
Строение молекулы т-РНК.
Благодаря определенному расположению комплементарных нуклеотидов и образованию между некоторыми из них водородных связей молекула т-РНК напоминает по форме лист клевера. На ее верхушке расположен антикодон -триплет свободных нуклеотидов, ответственный за узнавание соответствующего (комплементарного ему) кодона молекулы и-РНК.
Основание молекулы т-РНК является акцептором, т.е. служит местом прикрепления именно той и только той аминокислоты, которой соответствует антикодон данной молекулы т-РНК.
Механизм рекогниции: для того чтобы молекула т-РНК могла присоединить к своему акцепторному концу аминокислоту, необходимо, чтобы аминокислота была активирована, т.е. имела определенную избыточную энергию. Активация аминокислот происходит в цитоплазме с помощью специального фермента (ами-ноацил-т-РНК-синтетазы), который расщепляет молекулы АТФ и передают выделившуюся при этом энергию молекулам аминокислот. Молекула т-РНК выбирает из цитоплазмы соответствующую ее антикодону активированную аминокислоту и переносит ее в рибосому. Одна молекула т-РНК может транспортировать только одну аминокислоту.
Трансляция — это второй этап синтеза белка, выполняемый рибосомами по принципу комплементарное™ кодона и-РНК и антикодона т-РНК. В процессе трансляции осуществляется расшифровка генетической информации, переносимой молекулами и-РНК, и «перевод» ее с нуклеотидного кода на аминокислотный.
Механизм трансляции. Для трансляции необходимо, чтобы цепь и-РНК оказалась в канале, образующемся между меньшей и большей субъединицами рибосомы. В процессе трансляции эта цепь движется по каналу, так что в нем в каждый момент времени находится всего два кодона молекулы и-РНК. Трансляция начинается с инициации, когда через канал рибосомы пройдет стартовая аминокислота {метионин). В большую субъединицу рибосомы непрерывно поступают комплексы т-РНК + аминокислота, которые сменяют друг друга, причем в любой момент времени там находятся два комплекса, расположенные рядом. Если антикодон т-РНК оказывается комплементарным кодону и-РНК, то комплекс т-РНК + аминокислота временно присоединяется к цепочке и-РНК. Ко второму кодону и-РНК присоединяется второй комплекс т-РНК + аминокислота. С помощью ферментов между аминокислотами этих комплексов устанавливается пептидная связь и одновременно разрушаются связи между первой аминокислотой и т-РНК и между первой т-РНК и цепочкой и-РНК. т-РНК уходит из рибосомы за следующей аминокислотой, а цепочка и-РНК сдвигается на один триплет, и процесс повторяется.
В результате каждого такого шага молекула будущего белка увеличивается на одну аминокислоту в строгом соответствии с порядком, указанным молекулой и-РНК. Синтез полипептидной белковой цепи завершается тогда, когда в рибосому попадут терминирующие кодоны и-РНК. После этого полипептидная белковая молекула отделяется от рибосомы и поступает в канальцы ЭПС, где приобретает свойственную ей пространственную структуру.
■ Одна молекула и-РНК позволяет считывать с себя информацию сразу нескольким рибосомам.
Полисома — это комплекс, состоящий из и-РНК и нескольких (от 5-6 до нескольких десятков) рибосом.
■ Полисомы позволяют одновременно осуществлять синтез нескольких полипептидных цепей
■Синтез белковых молекул происходит непрерывно; за 1 мин образуется 50-60 тыс пептидных связей. Одна молекула белка синтезируется за 3-4 с.
Катаболизм (энергетический обмен)
Катаболизм (или энергетический обмен, диссимиляция) — это совокупность ферментативных реакций расщепления сложных органических соединений (в том числе пищевых веществ) на более простые вещества, сопровождающихся выделением энергии.
■ При этом часть энергии рассеивается в виде тепла, а часть аккумулируется в макроэргических связях АТФ и используется для обеспечения процессов жизнедеятельности клетки. Основное вещество, используемое клетками для получения энергии, -глюкоза.
❖ Этапы (стадии) катаболизма:
■ подготовительный,
■ бескислородный,
■ кислородный (отсутствует у анаэробных организмов).
❖Подготовительный этап (или пищеварение): биополимеры расщепляются до мономеров, белки — до аминокислот, жиры -до глицерина и жирных кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Протекает в цитоплазме клеток и пищеварительном тракте животных и человека. Сопровождается наибольшим выделением энергии в виде тепла. Бескислородный и (у аэробных организмов) кислородный этапы катаболизма составляют процесс клеточного дыхания.
Аэробное клеточное дыхание
Клеточное дыхание — совокупность процессов окисления органических веществ в клетках организмов, сопровождающихся выделением энергии, и накопление этой энергии в молекулах АТФ в форме, доступной клетке для ее последующего использования.
■ В зависимости от участия или неучастия кислорода в процессе дыхания различают аэробное и анаэробное дыхание.
■При любом способе дыхания в конечном итоге происходит перенос водорода, отщепляемого от окисляемых соединений, на неорганическое вещество (воду и др.).
Аэробное дыхание — дыхание, при котором потребляется свободный атмосферный кислород.
Аэробы — организмы, обитающие в среде свободного кислорода (большинство растений, животных, грибов и микроорганизмов).
❖ Бескислородный (или анаэробный) этап: мономеры, образовавшиеся на первом этапе, претерпевают дальнейшее расщепление без участия кислорода. (Пример: гликолиз — ферментативное анаэробное расщепление глюкозы до пировиноградной кислоты.) Выделяющаяся при этом энергия частично запасается в микроэргических связях АТФ. Протекает в цитоплазме клеток при участии ферментов; с мембранами не связан. У анаэробных организмов этот этап — конечный.
■ В животных клетках в результате гликолиза из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты и две молекулы АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 — 2С3Н4О3 + 2 АТФ + 2Н2О + Q1;
при этом 60% энергии выделяется в форме теплоты, 40% идет на синтез двух молекул АТФ.
❖ Кислородный (или аэробный) этап: образовавшиеся на предыдущем этапе вещества окисляются (при доступе кислорода и при участии ферментов) до конечных продуктов -Н2О и СО2, с выделением большого количества энергии и аккумуляцией ее в молекулах АТФ. Осуществляется в митохондриях.
■ Этот этап включает цикл Кребса и процессы окислительного фосфорилирования.
❖ Цикл Кребса (или цикл лимонной кислоты)- процесс ферментативного окисления три- и дикарбоновых кислот (в частности, пировиноградной и молочной кислот) с образованием диоксида углерода и атомарного водорода.
■ Сначала пировиноградная (или молочная) кислота, соединяясь с коферментом А (Ко-A) и выделяя молекулу СО2, превращается в ацетил-КоА. Ацетил-КоА реагирует с щавелевоуксусной кислотой, образуя при этом лимонную кислоту, которая затем вступает в цикл ферментативных реакций. В результате она теряет атомы водорода и электроны и вновь образует щавелевоуксусную кислоту и СО2 (цикл замыкается). В цикле Кребса также происходит восстановление некоторых ферментов, участвующих в обеспечении процесса дыхания. За счет энергии, высвобождающейся в некоторых реакциях цикла, по его ходу синтезируются две молекулы АТФ.
■ Итоговые уравнения расщепления (окисления) пировиноградной и молочной кислот:
С3Н4О3 + ЗН2О -> ЗСО2 + 10Н; С3Н6О3 + ЗН20 -> 3СО2 + 12Н.
Углекислый газ выделяется из митохондрии в окружающую среду, а атомы водорода оказываются связанными с молекулами, кратко называемыми НАД, в комплексы НАД*Н.
Окислительное фосфорилирование.
При сближении комплексов НАД*Н с внутренней мембраной митохондрии атомы водорода отщепляются от НАД и присоединяются к встроенным в эту мембрану молекулам особого транспортного железосодержащего белка — переносчика катионов, диссоциируя при этом на протоны Н+ и электроны е—: Н → Н+ + е—.
С помощью белка-переносчика катионы водорода Н+ проникают через внутреннюю мембрану митохондрии в межмембранное пространство (механизм активного транспорта) и накапливаются там, образуя протонный резервуар.
Электроны, образовавшиеся при диссоциации атомов водорода, последовательно передаются от одного переносчика к другому к внутренней стороне мембраны (обращенной к матриксу) и с помощью фермента оксидазы присоединяются к кислороду, образуя анион кислорода:
О2 + 2е— → О22-.
■ В результате разделения положительно и отрицательно заряженных частиц между внешней и внутренней сторонами мембраны образуется электрическое поле. Когда оно достигает некоторой критической величины, в молекулах фермента АТФ-синтетазы, встроенного во внутреннюю мембрану, открываются протонные каналы, по которым протоны Н+ устремляются в матрикс митохондрии. При этом выделяется энергия, большая часть которой (55%) идет на синтез молекул АТФ из АДФ и фосфорной кислоты.
■ Протоны Н+ соединяются с анионами кислорода, образуя воду и молекулярный кислород О2:
4Н+ + 2О22- → 2Н2О + О2.
В этой реакции два из каждых четырех атомов кислорода связываются в молекулах воды, поэтому в процессе дыхания в целом кислород расходуется.
♦ Итоговое уравнение кислородного этапа:
2С3Н4О3 + 6О2 + 36АДФ + З6Н3РО4 →6СО2 + 36АТФ + 42Н2О.
❖ Замечания
■ В результате расщепления одной молекулы глюкозы образуется 38 молекул АТФ. на бескислородном этапе — 2АТФ и на кислородном этапе — 36АТФ. Эти молекулы выходят за пределы митохондрии и участвуют во всех внутриклеточных процессах, в которых необходима энергия. Расщепляясь, АТФ отдает энергию и в виде АДФ и фосфата возвращается в митохондрии.
■ Свободный кислород О2, поступающий в митохондрии в процессе дыхания организма, необходим для присоединения протонов водорода Н+. В его отсутствие концентрация Н+ возросла бы до некоторого предельного значения, после чего аэробный процесс в митохондриях прекратился бы.
■ При недостатке в клетке глюкозы в процесс дыхания могут включаться жиры и белки.
Анаэробное дыхание. Брожение
Анаэробное дыхание не требует потребления кислорода. Анаэробы — организмы, способные обитать в бескислородной среде.
Примеры анаэробов: многие виды бактерий, микроскопические грибы; анаэробное дыхание возможно также у мышечных клеток и клеток растений при недостатке кислорода.
Облигатные анаэробы (бактерия ботулизма и др.) существуют только при полном отсутствии О2 (кислород для них губителен).
Факультативные анаэробы (дрожжи, черви-паразиты и др.) могут существовать как без О2, так и в его присутствии.
Брожение — анаэробный окислительно-восстановительный процесс расщепления в лизосомах клетки органических соединений до молочной кислоты и воды, этилового спирта и углекислого газа (или некоторых других простых продуктов), посредством которого организмы получают энергию, необходимую для жизнедеятельности.
■ При брожении происходит перенос водорода, отщепляемого от окисляемых соединений, на органическое вещество (молочную кислоту, этиловый спирт и др.).
❖Виды брожения в зависимости от образующихся продуктов: молочнокислое (молочнокислые бактерии, мышечные клетки при недостатке О2), маслянокислое, уксуснокислое, спиртовое (дрожжи) и др.
■Молочнокислое брожение: в результате гликолиза из одной молекулы глюкозы образуются две молекулы пировиноград-ной кислоты (которая затем превращается в молочную) и две молекулы АТФ:
С6Н12О6 + 2АДФ + 2Н3РО4 →2С3Н6О3 + 2АТФ + 2Н2О + Q1,.
■ Спиртовое брожение: продуктами гликолиза являются этиловый спирт, АТФ, вода и углекислый газ:
С6Н12О6 + 2АДФ + 2Н3РО4 →2С2Н5ОН + 2АТФ + 2СО2 + Q2.